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Planning by Rewriting: Efficiently Generating High-Quality Plans* 

Jose Luis Ambite and Craig A. Knoblock 
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4676 Admiralty Way, Marina del Rey, CA 90292 
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Abstract 

Domain-independent planning is a hard combinatorial 
problem. Taking into account plan quality makes the 
task even more difficult. We introduce a new paradigm 
for efficient high-quality planning that exploits plan 
rewriting rules and efficient local search techniques 
to transform an easy-to-generate, but possibly sub- 
optimal, initial plan into a low-cost plan. In addition 
to addressing the issues of efficiency and quality, this 
framework yields a new anytime planning algorithm. 
We have implemented this planner and applied it to 
several existing domains. The results show that this 
approach provides significant savings in planning ef- 
fort while generating high-quality plans. 

Introduction 
Planning is the process of generating a network of ac- 
tions that achieves a desired goal from an initial state 
of the world. Domain independent planning accepts 
as input, not only the initial state and the goal, but 
also the domain specification (i.e., the operators). This 
is a problem of considerable practical significance, but 
domain-independent planning is computationally hard 
except for its simplest formulations (Erol, Nau, k Sub- 
rahmanian 1995). Moreover, in many circumstances it 
is not enough to find any solution plan since the qual- 
ity of the solution is important. This paper presents 
a new paradigm for efficiently generating high-quality 
plans. 

Two observations guided the present work.   First, 
there are two sources of complexity in planning: 

• Satisfiability: the difficulty of finding any solution 
to a planning problem. 

• Optimization: the difficulty of finding the optimal 
solution according to a given cost metric. 

For a given domain, each of these facets may contribute 
differently to the complexity of planning. In particu- 
lar, there are many domains in which the satisfiabil- 
ity problem is easy and their complexity is dominated 
by the optimization problem. For example, there may 

be many plans that would solve the problem, so find- 
ing one is simple (that is, in polynomial time), but 
the cost of each solution varies greatly so that find- 
ing the optimal one may be difficult. We shall refer 
to these domains as optimization domains. Some opti- 
mization domains of great practical interest are query 
access planning and process planning.1 

Second, planning problems have a great deal of 
structure. Plans are a type of graphs with strong 
semantics, determined both by the general properties 
of planning and each particular domain specification. 
This structure should and can be exploited to improve 
the efficiency of the planning process. 

Prompted by the previous observations, we devel- 
oped a novel approach for efficient planning in opti- 
mization domains: Planning by Rewriting (PBR). The 
framework works in two phases: 

1. Generate an initial solution plan. Recall, that in op- 
timization domains this is easy. However, the quality 
of this initial plan may be far from optimal. 

2. Iteratively rewrite the current solution plan improv- 
ing its quality using a set of plan rewriting rules until 
either an acceptable solution is found or a resource 
limit is reached. 

There are several important points to note in this 
basic framework. First, the rewritten plans are always 
solutions to the given planning problem. Thus, the 
search occurs in the space of solution plans, which is 
in many cases much smaller than the space of partial 
plans that other planning systems usually explore. Sec- 
ond, efficient search of the space of rewritings is criti- 
cal to the success of the method. Thus, we adapt tech- 
niques from local search to help in this process. Finally, 
our framework yields an anytime algorithm (Dean & 
Boddy 1988). The planner always has a solution to of- 
fer at any point in its computation (modulo the initial 
plan generation, which should be fast). This is a clear 
advantage over traditional planning approaches, which 
must run to completion before producing a solution. 
Thus, our system allows the possibility of trading off 

"Copyright ©1997, American Association for Artificial 
Intelligence (www.aaai.org). All rights reserved. 

1 Interestingly, one of the most widely studied planning 
domains, the blocksworld, also has this property. 



planning effort and plan quality. For example, in query 
planning the quality of a plan is its execution time and 
it may not make sense to keep planning if the cost of 
the current plan is small enough, even if a cheaper one 
could be found. 

As motivation, consider two domains: query pro- 
cessing in a distributed, heterogeneous environment 
and manufacturing process planning. Distributed 
query processing (Yu k Chang 1984) involves gener- 
ating a plan that efficiently computes a user query. 
This plan is composed of data retrieval actions at 
diverse information sources and operations on this 
data (such as join, selection, etc). Some systems 
use a general-purpose planner to solve this problem 
(Knoblock 1996). In this domain it is relatively easy 
to construct an initial plan and then transform it using 
a gradient-descent search to reduce its cost. The plan 
transformations exploit the commutative and associa- 
tive properties of the (relational algebra) operators and 
facts such as that when a group of operators can be 
executed together at a remote information source it is 
generally more efficient to do so. Figure 1 shows some 
sample transformations. 

jom-swap 
get(ql, dbl) N (get(q2, db2) txi get(q3, db3)) & 
get(q2, db2) N (get(ql, dbl) M get(q3, dbS)) 
reraot e-join-eval 
(get(R,db)    txi   get(S,db)) A capability(db,join)    => 
get(R M S, db) 

Figure 1: Transformations in Query Planning 

In manufacturing, the problem is to find an econom- 
ical plan of machining operations that implement the 
desired features of a design. In a feature-based ap- 
proach (Nau, Gupta, k, Regli 1995) it is possible to 
enumerate the possible actions involved in building a 
piece by analyzing its CAD model. It is more difficult 
to find an ordering of the operations and the setups 
that optimize the machining cost. However, similar to 
query planning, it is possible to incrementally trans- 
form a (possibly inefficient) initial plan. Often, the or- 
der of actions does not affect the design goal, only the 
quality of the plan, thus actions can commute. Also, it 
is important to minimize the number of setups because 
fixing a piece on a machine is a rather time consum- 
ing operation. Such grouping of machining operations 
on a setup is analogous to evaluating a subquery at a 
remote information source. 

In summary, this paper develops a new planning 
paradigm yielding several contributions. First, by us- 
ing local search techniques, high-quality plans can be 
efficiently generated. Second, the rewriting rules pro- 
vide a natural and convenient mechanism to specify 
complex plan transformations. Third, it offers a new 
anytime planning algorithm. 

Planning by Rewriting 
We will describe the main issues in Planning by Rewrit- 
ing as an instantiation of the local search idea (Pa- 
padimitriou & Steiglitz 1982): 

• Selection of an initial feasible point: How to effi- 
ciently generate an initial solution plan. 

• Generation of a local neighborhood: The neighbor- 
hood is the set of plans obtained from the application 
of the plan rewriting rules. 

• Cost function to minimize: The given plan evalua- 
tion function could range from a simple domain inde- 
pendent cost metric, such as the number of steps, to 
more complex domain specific ones, such as query 
evaluation cost or manufacturing time for a set of 
parts.  

• Selection of the next point: What is the next plan 
to consider. This choice determines how the global 
space will be explored and has a significant impact 
on the efficiency of planning. For example, steepest 
descent, first improvement, random walk, etc. 

In the following subsections we expand these topics. 
First, we introduce some background on planning and 
rewriting. Second, we discuss the initial plan genera- 
tion. Third, we show how the local neighborhood is 
generated by the rewriting rules and present their syn- 
tax, their semantics, and a rule taxonomy. Finally, we 
address the selection of the next plan. 

Planning and Rewriting Concepts 

A plan is represented by a graph notation, in the spirit 
of partial-order causal-link (POCL) planners, such as 
UCPOP (Penberthy & Weld 1992). The nodes are 
plan steps, that is, domain actions. The edges specify 
a temporal ordering relation among steps, imposed by 
causal links and ordering constraints. A causal link 
is a record of how a condition is used in a plan. This 
record contains the condition, a step that produces (es- 
tablishes) it, and a step that consumes it (that is, a 
step which needs it as a precondition). By causality, 
the producer must precede the consumer. The order- 
ing constraints arise from solving operator threats and 
resource conflicts. An operator threat occurs when a 
step has an effect that negates the condition of a causal 
link and can possibly be ordered between its producer 
and its consumer. To prevent this situation, which 
possibly makes the plan inconsistent, POCL planners 
order the threatening step either before the producer 
(promotion) or after the consumer (demotion). 

Operators may need to use certain resources to per- 
form their actions. In this paper, we consider unit 
non-consumable resources, that is, those that are fully 
acquired by an operator until the completion of its ac- 
tion, and then released to be reused (Knoblock 1994b). 
For this type of resource, steps requiring the same re- 
source have to be sequentially ordered.   Finally, note 



that all conditions in the plan are fully ground because 
we start with a complete initial plan. 

A plan rewriting rule, akin to term and graph rewrit- 
ing rules, specifies the replacement under certain con- 
ditions of a partial plan by another partial plan. Our 
system ensures that the rewritten plan remains com- 
plete and consistent. These rules are intended to im- 
prove the quality of the plans. 

Generation of an Initial Plan 
Fast initial plan generation is domain-specific in na- 
ture. It requires the user to specify an efficient mecha- 
nism to compute the initial solution plan. By the defi- 
nition of optimization domains this should not be hard. 
We have experimented with two approaches to con- 
struct feasible initial plans: using a planner with search 
control rules and exploiting simple domain-specific ap- 
proximation algorithms. 

A very general way of efficiently constructing plans is 
to use a domain-independent generative planner that 
accepts search control rules. By setting the type of 
search and providing a strong bias by means of the 
search control rules, the planner can quickly generate 
a valid, although possibly suboptimal, initial plan. For 
example, in the manufacturing domain we used depth- 
first search and a goal selection heuristic based on ab- 
straction hierarchies (Knoblock 1994a). This combi- 
nation quickly generates a feasible plan, but often the 
time required to manufacture all objects is suboptimal. 

For many domains, we expect that simple domain- 
dependent greedy algorithms will provide good initial 
plans. For example, in the query planning domain, 
the system can easily generate initial query evaluation 
plans by parsing the given query. In the blocksworld it 
is also straightforward to generate a solution in linear 
time using the naive algorithm: put all blocks on the 
table and build the desired towers from the bottom up. 

Generation of a Local Neighborhood 
The plan rewriting rules determine the neighborhood 
of the current plan to be explored. They embody 
the domain-specific knowledge about what transforma- 
tions of a solution plan are likely to result in higher- 
quality solutions. In this section we describe the syntax 
and the semantics of the rules, as well a taxonomy of 
plan rewriting rules. 

Rule Syntax and Semantics First, we introduce 
the rule syntax and semantics through some examples. 
Then, we provide a formal description. A sample rule 
in the blocks world domain is given in Figure 2. Intu- 
itively, it says that, whenever possible, it is better to 
stack a block on top of another directly, rather than 
first moving it to the table. 

2 Note that the link expression in the antecedent is ac- 
tually redundant. Unstack puts the block ?bl on the ta- 
ble from where it is picked up by the stack operator, so 
that the causal link is already implied by the : operators 

(define-rule :name avoid-move^twice 
:if  (:operators ((?nl (unstack ?bl ?b2)) 

(?n2 (stack ?bl ?b3 Table))) 
:links (?nl  (on ?bl Table) ?n2) 
:constraints ((possibly-adjacent ?nl ?n2) 

(:neq ?b2 ?b3))) 
:replace (: operators (?nl ?n2)) 
•.with (:operators (?n3 (stack ?bl ?b3 ?b2)))) 

Figure 2: Blocks World Rewriting Rule2 

A rule for a manufacturing domain (Minton 1988) is 
shown in Figure 3. It states that if a plan includes two 
consecutive punching operations to make holes in two 
different objects, but another machine, a drill-press, is 
also available, the plan can be parallelized by replacing 
one of the punch operations by using the drill-press. 

(define-rule :name punch-by-drill-press 
:if  ('.operators ((?nl (punch ?ol ?widthl ?ornl)) 

(?n2 (punch ?o2 ?width2 ?orn2))) 
:links (?nl ?n2) 
:constraints ((:neq ?ol ?o2) 

(possibly-adjacent ?nl ?n2))) 
:replace (:operators (?nl)) 
:with (:operators 

(?n3 (drill-press ?ol ?widthl ?ornl)))) 

Figure 3: Process Planning Rewriting Rule 

In general, the rule syntax follows the template in 
Figure 4. The rewriting algorithm is outlined in Fig- 
ure 5. The semantics of the rules is as follows. The 
antecedent, the :if field, describes a graph specifica- 
tion (operators, links, and constraints) that is matched 
against the plan. The : operators field consists of a 
list of step number and step predicate pairs. Each 
step predicate is interpreted as an step action (or as 
one of the resources used by the step, if the keyword 
:resource is present, e.g. Figure 7). The :links 
field consists of a list of link specifications. A link 
specification can match either any ordering link in 
the plan, a causal link if a predicate is given, or an 
ordering link introduced in the resolution of threats 
(if the keyword :threat is present). Finally, built- 
in and user-defined predicates can be specified in the 
: constraints field. The built-in predicates include 
inequalities (:neq), comparison, and arithmetic predi- 
cates. The user-defined predicates may act as filters on 
the previous variables or introduce new variables (and 
compute new values for them). Formally, the language 
of the antecedent forms a conjunctive query with in- 
terpreted predicates against the plan graph. The rule 
matches can be computed either all at the same time, 
as in bottom-up evaluation of logic databases, or one- 

and : constraints specification. The interpreted predicate 
possibly-adjacent ensures that the operators are consec- 
utive in some linearization of the plan. 



at-a-time as in Prolog. Which option is preferable de- 
pends on the search strategy. 

(def ine-rule :name <rule-name> 
:if  (:operators ((<nv> <np> {:resource})  —) 

:links ((<nv> {<lp>|:threat} <nv>)   ...) 
:constraints (<ip>  ...)) 

:replace (:operators (<nv> ...) 
:links ((<nv> {<lp>I:threat} <nv»   ...)) 

:with (:operators ((<nv> <np> {rresource})  ...) 
:links ((<nv> {<lp>} <nv»   ...))) 

<nv> = node variable, <np> = node predicate, 
<lp> = causal link predicate, {} = optional 
<ip> = interpreted predicate,     I  = alternative 

Figure 4: Rewriting Rule Template 

1. Match rule antecedent,  :if field, against the plan, 
returning a set of candidate rule instantiations. 

2. For each antecedent instantiation: 

(a) Remove from the plan the subgraph specified in 
the :replace field. 

(b) Generate all consistent embeddings of the sub- 
graph specified in the : with field. 

Figure 5: Outline of Plan Rewriting Algorithm 

Rules must be safe, that is, all the variables appear- 
ing in the consequent of the rules, : replace and :with 
fields, have to appear in the antecedent. The : replace 
field identifies the subgraph that is going to be removed 
from the plan (a subset of steps and links of the an- 
tecedent). The :with field specifies the replacement 
subgraph. The system generates all valid embeddings 
of the replacement subplan into the original plan (once 
the subplan in the :replace field has been removed). 
Thus, a single rule instantiation may produce several 
rewritten plans. The formal conditions for valid rewrit- 
ing, a generalization from plan merging in (Foulser, Li, 
k Yang 1992), are shown in Figure 6. It is possible to 
define rules whose application provably yields a correct 
plan. However, this eager approach would require the 
generation of many rules with very long and specific 
antecedents, which are possibly expensive to match. 
An alternative is a lazy approach in which the rule an- 
tecedents only include a subset of the conditions neces- 
sary for a valid rewriting. In this case, when the rules 
are applied, the rewritten plans are checked for cor- 
rectness. The "lazy" approach allows the specification 
of more natural rules that express the main idea of the 
transformation instead of focusing on technicalities or 
rare cases. We used the latter for our experiments. 

A Taxonomy of Plan Rewriting Rules In order 
to guide the user in defining plan rewriting rules for 
a domain or to help in designing algorithms that may 

A subplan 51, embedded in a plan P, can be replaced 
by a subplan 52, resulting in plan P', iff 
there exists an ordering O, such that 
P' = (P - 51) U 52 U O  is   a  consistent   plan,   and 
NetPreconditions(52, P') C NetPreconditions(51,P), 
and UsefulEffects(51, P) C UsefulEffects(52, P'). 

Useful Effects of a subplan 5, embedded in a plan 
P, are those conditions present in causal links whose 
producer is in 5 and whose consumer is in P — 5. 

Net Preconditions of a subplan 5, embedded in a 
plan P, are those conditions in causal links whose 
consumer is in 5 and whose producer is in P — 5. 

Figure 6: Conditions for Valid Rewriting 

automatically deduce the rules from the domain spec- 
ification (see Future Work), it is helpful to know what 
kinds of rules are useful. So far we have identified the 
following general types of transformation rules. 

Reorder: These are rules based on algebraic proper- 
ties of the operators, such as commutative, associa- 
tive and distributive laws. For example, the com- 
mutative rule that reorders two operators that need 
the same resource in Figure 7, and the join-swap 
rule in Figure 1 that combines the commutative and 
associative properties of the relational algebra. 

(define-rule :name resource-swap 
:if  (:operators ((?nl (machine ?x)   :resource) 

(?n2 (machine ?x)   :resource)) 
:links ((?nl :threat ?n2))) 

:replace (:links (?nl ?n2)) 
:pith (:links (?n2 ?nl)))  

Figure 7: Reorder Rewriting Rule 

Collapse: These are rules that replace a subplan 
by a smaller subplan. For example, when sev- 
eral operators can be replaced by one, as in the 
remote-join-evalrule in Figure 1, which prefers to 
evaluate a join between two tables that come from 
the same source at the remote source rather than lo- 
cally (if the source has join processing capabilities). 
Another example is the blocksworld rule in Figure 2. 

Expand: These are rules that do the inverse of col- 
lapse. Although we did not find this rule type in 
the domains analyzed so far, it is easy to imagine 
a situation in which an expensive operator can be 
replaced by a set of operators that are cheaper as a 
whole. For example, when some of these operators 
are already present in the plan and can be synergis- 
tically reused. 

Parallelize: These are rules that replace a subplan 
with an equivalent alternative subplan that requires 
fewer ordering constraints. A typical case is when 
there are redundant or alternative resources that 



the  operators  can  use.      For example,   the  rule 
punch-by-drill-press in Figure 3. 

Selection of Next Plan 

The strategy to select the next plan to consider de- 
termines the way the solution space is searched. The 
rules generate the "natural perturbations" of a plan, 
but which rewriting, if any, will lead towards the global 
optimum cannot be predicted in general. We have ex- 
plored gradient descent techniques, such as first im- 
provement and steepest descent. In first improvement, 
the next plan to consider is the first rewriting that 
improves the cost. This has the advantage that the 
neighborhood is generated only up to the point such 
a plan is found, but the improvement may not be the 
best that could be achieved in that neighborhood. In 
steepest descent, the minimum cost plan within the 
neighborhood is chosen. This guarantees the biggest 
improvement in cost in each iteration, but it requires 
the whole neighborhood to be searched. 

In general, the space of rewritings and the cost func- 
tions are not convex, thus our gradient descent tech- 
niques can get caught in local minima. To move to- 
wards the optimum escaping low-quality local minima, 
we used two techniques: restart and random walk. In 
the first one, the system restarts the rewriting process 
a fixed number of times from a different initial plan. 
This technique requires an initial plan generator that is 
able to provide several different/random initial plans. 
The second technique is applied when the local minima 
are not strict and consists of a random walk of a fixed 
length along the plateau. 

Initial Results 
We have implemented the planner described in this 
paper and applied it in several different application 
domains. In this section we report on our initial results 
in the domains of manufacturing process planning and 
distributed query planning. 

Process planning 
The task in the manufacturing process planning do- 
main is to find a plan to manufacture a set of parts. 
We implemented the domain specification in (Minton 
1988). This domain contains a variety of machines, 
such as a lathe, punch, spray painter, welder, etc, 
which are used to perform various operations to pro- 
duce a set of parts. In this domain all of the machining 
operations are assumed to take unit time and the op- 
timal plan is the one that requires the minimal length 
schedule. There are ten possible machining operations 
for making a part. Sample rewriting rules for this do- 
main appear in Figures 3 and 7. 

To evaluate the performance of Planning by Rewrit- 
ing (PBR), we compared it to a planner called Sage 
(Knoblock 1995), which is an extension of UCPOP 
that supports resources, execution and replanning. For 

PBR, we defined ten plan rewriting rules for this do- 
main and used a steepest descent search. We ran Sage 
with a best-first search over the length of the sched- 
ule (Sage-BFS) in order to find the optimal plan. We 
used Sage with depth-first search and a goal selection 
heuristic based on abstraction hierarchies (Sage-DFS) 
to generate plans as fast as possible. Sage-DFS is also 
used for the initial plan generator for PBR. We tested 
each of the three systems on 300 problems that ranged 
from 1 to 12 goals (25 in each set). There were 80 prov- 
ably unsolvable problems. Sage-DFS was able to solve 
22 more problems than Sage-BFS in the given search 
limit of 50,000 nodes (Sage-DFS proved 16 solvable and 
6 unsolvable). The plan size (number of steps) grows 
linearly with the number of goals, from 3 steps for the 
one goal problems to 14 steps for the 12 goal problems. 

The results are shown in Figures 8 and 9. Figure 8 
shows the average time on the solvable problems for 
each problem set in the three configurations. Figure 9 
shows the average schedule length for the problems 
solved by all planners. As shown in the graphs, PBR 
takes slightly longer than Sage-DFS, as expected since 
Sage-DFS is also used to generate the initial plans for 
PBR, but is able to improve their quality significantly. 
PBR performs about the same as Sage-BFS on the easy 
problems, both in time and in quality. For harder prob- 
lems, PBR is much more efficient than Sage-BFS and 
it produces plans whose quality is close to the optimal. 
These results show the benefits of finding an subopti- 
mal initial plan quickly and then efficiently transform- 
ing it to improve its quality as proposed in PBR. 
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Figure 8: Manufacturing Time Comparison 

Query planning 
Distributed query processing involves generating a 
plan that efficiently computes a user query. This plan 
is composed of data retrieval actions at diverse infor- 
mation sources and operations on this data. We used 
a simplified domain for the query planner (Sage) of the 
SIMS mediator (Arens, Knoblock, & Shen 1996). We 
compare the performance and quality of the Sage plan- 
ner and PBR for this domain, where the query plans 
are trees of join operations. 
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In the query planning domain, Sage performs a best- 
first search with a heuristic commonly used in query 
optimization that explores only the space of left join 
trees (Sage-BFS). For PBR, we defined the join-swap 
rule of Figure 1. The initial plans were random depth- 
first search parses of the query (Sage-DFS). To escape 
local minima, PBR generates and rewrites three ran- 
dom initial plans and picks the best rewriting. The 
cost metric for all planners is based on an estimation 
of the cost of the join operations and the size of the 
intermediate results transmitted between the sources 
and the mediator. In this experiment, we used a set of 
43 conjunctive queries previously defined for a logistics 
planning application involving from one to seven rela- 
tions. All queries could be solved by all planners. A 
set of eight relation joins could not be solved by Sage 
within 50,000 nodes, while PBR could easily solve them 
with low cost plans. 

The results are shown in Figures 10, 11, and 12. Fig- 
ure 10 shows the average time for each query set for 
query sizes from one to seven. The times for PBR in- 
cludes both the generation of the three random initial 
plans and their rewriting. Figure 11 shows the average 
quality of Sage-DFS and PBR normalized with respect 
to Sage-BFS. The normalization is done for clarity be- 
cause the values for Sage-BFS query cost vary con- 
siderably and we want to show how PBR and Sage- 
DFS perform relative to Sage-BFS as the problem size 
increases. The graph shows that Sage-DFS produces 
very poor quality plans on the large problems. Fig- 
ure 12 shows in more detail the average quality of 
PBR normalized with respect to Sage-BFS. This graph 
shows that PBR performs as well as Sage-BFS for the 
smaller queries and even finds better solutions for the 
larger ones (up to 12% better). This is not surpris- 
ing because of the restricted space of left trees that 
Sage-BFS is searching. As in the manufacturing do- 
main, PBR shows better scaling properties than the 
corresponding systematic algorithms. 
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Figure 11: Query Plan Quality Comparison 

Related work 
Some of the most closely related work is on plan merg- 
ing (Foulser, Li, & Yang 1992). Their system solves a 
complex goal by dividing it into subgoals, solving the 
subproblems, and combining the partial solutions ex- 
ploiting synergies. They improve the quality of a plan 
by replacing a set of operators by one operator that 
can do the same job. Planning by Rewriting differs 
in that it starts with a complete solution plan for the 
original goal, and it generalizes plan merging by allow- 
ing the replacement of a subplan by another subplan, 
thus expanding the types of plan transformations and 
the opportunities for cost reduction. 

Case-based planning also attempts to solve a prob- 
lem by modifying a previous solution (Veloso 1994; 
Paulokat & Wess 1994). Systematic algorithms, such 
as (Hanks k Weld 1995), invert the decisions done in 
refinement planning to find a path between the solu- 
tion to a similar old problem and the new problem. 
Our work modifies a solution to the current problem, 
so there is no need for similarity metrics, nor retrieval 
process. Moreover, our rewriting rules indicate how to 
transform a solution into another solution plan, rather 
than searching blindly up and down the space of par- 
tial plans. However, the rules in PBR may search the 
space of rewritings non-systematically. Such an effect 
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is ameliorated by the gradient-descent search strategy. 
Local search has a long tradition in combinatorial 

optimization (Papadimitriou & Steiglitz 1982). Lo- 
cal improvement ideas have found application in con- 
straint satisfaction, scheduling, and heuristic search. 
In constraint satisfaction, (Minton 1992) start with a 
complete, but inconsistent, variable assignment and 
efficiently search the space of repairs using a simple 
heuristic, min-conflicts. In our work we focus on a 
STRIPS-like planning paradigm (with fairly expressive 
operators) in which the rewritings yield complete and 
consistent plans, as opposed to complete but incon- 
sistent variable assignments. In work on scheduling 
and rescheduling, (Monte Zweben & Deale 1994) de- 
fine a set of general, but fixed, repairs methods, and 
use simulated annealing to search the space of sched- 
ules. Our plans are networks of actions as opposed to 
the metric-time total-order tasks in that work. Also we 
can easily specify different rewriting rules (general or 
specific) to suit each domain, as opposed to their fixed 
strategies. Related ideas have been used in heuristic 
search (Ratner & Pohl 1986). In that work, first they 
find a valid sequence of operators using an approxi- 
mate algorithm. Then, they identify segments of this 
sequence, take their initial and end states, and heuris- 
tically search for a shorter path for that segment (the 
cost metric is the path length). They are doing a state- 
space search, while PBR is doing a plan-space search. 
The least-committed partial-order nature of PBR al- 
lows it to optimize the plans in ways that cannot be 
achieved by optimizing linear subsequences. 

A variety of research has attacked the complexity 
of planning. Some systems incorporate automatically 
learned search control, for example, search control 
rules (Minton 1988) and abstraction (Knoblock 1994a). 
Our system does not learn the rewriting rules currently 
(see Future Work). Other work has reduced planning 
to propositional satisfiability, which can be solved by 
stochastic local search (Kautz k Selman 1996). These 
approaches do not specifically address plan quality, or 
else they consider only very simple cost metrics (such 
as the number of steps).    Quality-improving control 

rules are learned in (Perez 1996), but planning effi- 
ciency was not significantly improved. By exploiting 
domain-specific knowledge, conveniently expressed as 
plan rewriting rules, and the local search approach, we 
improve both plan efficiency and quality. Moreover, we 
provide an anytime algorithm while other approaches 
must run to completion. 

Some domain specific planners have also used a 
transformational approach, for example, query, evalua- 
tion in centralized databases (Graefe & DeWitt 1987). 
They parse the query to obtain an initial evaluation 
plan and iteratively transform this plan using a set of 
rules based on the algebra of the data model. PBR of- 
fers a more general and easily extensible framework to 
tackle more complex information gathering domains. 
Finally, the research in graph rewriting (Schurr 1996) 
may provide efficient matching algorithms and perhaps 
another implementation vehicle using high-level graph- 
rewriting programming languages. 

Future Work 

There are several issues that we plafrto address more 
thoroughly in the future: initial plan generation, au- 
tomatic rule generation, and alternative search strate- 
gies. Initial plan generation is domain-specific, but 
we intend to provide a domain independent procedu- 
ral plan construction language to allow the convenient 
specification of plan construction algorithms. It will 
include primitives for adding steps and ordering con- 
straints, but it will hide the complexity of the data 
structures used to represent the actual plans. 

We believe that the rules can be generated by fully 
automated procedures in many domains. The methods 
can range from static analysis of the domain operators 
to analysis of sample equivalent plans (that achieve the 
same goals but at different costs). Note the similarity 
with methods to automatically deduce search control 
(Minton 1988; Etzioni 1993) and also the need to deal 
with the utility problem. 

There are many techniques in the local search litera- 
ture that we could adapt to our framework. In partic- 
ular, we plan to explore variable depth rewriting, and 
variations of tabu search. In variable depth, a sequence 
of rewritings is applied in order to overcome initial cost 
increases that eventually would lead to strong cost re- 
ductions. This idea leads to the creation of rule pro- 
grams, which specify how a set of rules are applied to 
the plan, possibly depending on run-time conditions. 
In tabu search, some of the rewritings are temporar- 
ily forbidden regardless of their cost. This is useful 
to avoid returning to some previously visited plan and 
thus cycling. Also, it forces the search not to be con- 
centrated in a small local area around a local minimum. 
Finally, we plan to improve the planner implementa- 
tion. For example, a RETE-like graph matcher (Forgy 
1982) would make the system much more efficient. 



Conclusions 
We presented a new paradigm for efficient high-quality 
planning based on local search and plan rewriting, and 
we provided initial experimental support for its use- 
fulness in several domains. This framework achieves a 
balance between domain knowledge, conveniently ex- 
pressed as plan rewriting rules, and general local search 
techniques that have been proved useful in many hard 
combinatorial problems. We expect that these ideas 
will push the frontier of solvable problems for many 
domains into the range of real-world problems in which 
high quality plans and anytime behavior are needed. 
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